Acta Cryst. (1966). 20, 425 Structure Cristalline de l'Acide Ferrocyanhydrique, H4[Fe(CN)₆]

PAR M. PIERROT, R. KERN ET R. WEISS

Laboratoire de Minéralogie et Cristallographie,

Université de Nancy et Laboratoire de Chimie Minerale et Structurale, Université de Strasbourg, France

(Reçu le 28 mai 1965)

The crystalline structure of H₄[Fe(CN)₆] has been determined by X-ray diffraction and by three-dimensional analysis. [Fe(CN)₆] ions are regular octahedra: Fe-C, 1·89 Å and C-N, 1·15 Å. There are two short distances between nitrogen atoms of neighbouring octahedra, one being 2·68 Å and the other 2·88 Å. There are two kinds of hydrogen bond, the first almost symmetric: N(1)-H_I, 1·45 Å and \overline{N} (3')-H_I, 1·23 Å, and the second asymmetric: N(1)-H_{II}, 1·81 Å and N(2)-H_{II}, 1·11 Å.

Introduction

L'acide ferrocyanhydrique cristallisé, $H_4[Fe(CN)_6]$, est un composé dont la stabilité est probablement assurée par les liaisons hydrogène entre les groupes [Fe(CN)₆]⁴⁻. Les mesures réfractométriques (Batsanov, 1958) semblent montrer l'existence de fortes liaisons hydrogène, et l'étude des spectres infra-rouge (Evans, Jones & Wilkinson, 1964; Ginsberg & Koubek, 1965) les confirme très nettement.

Nous avons donné (Pierrot, 1964) une étude cristallographique préliminaire de l'acide ferrocyanhydrique. Le groupe spatial $P2_1/a$ (C_{2h}^5) et le nombre Z=2 de molécules par maille montrent que les ions [Fe(CN)₆]⁴⁻ sont centrés en 000 et $\frac{1}{2}$, et que certains groupes (CN)⁻ doivent se partager plus d'un proton.

Expériences

Deux monocristaux de 0,15 mm et 0,20 mm de diamètre ont été taillés le long de **a** et **b** et placés à l'intérieur d'un capillaire en verre de Lindemann pour éviter la décomposition. Pour le rayonnement Co $K\alpha$ les corrections d'absorption ont pu être neégligées.

Sur un rétigraphe intégrateur, les strates $hk0 \rightarrow hk5$ et $h0l \rightarrow h3l$ ont été enregistrées quatre fois avec des expositions croissantes, sur un générateur stabilisé à $1^{0}/_{00}$. Seuls les clichés parfaitement symétriques et ayant des taches bien intégrées ont été retenus pour la microphotométrie étalonnée pour Co $K\alpha$.

Le Tableau 1 donne les moyennes des amplitudes observées F_o et l'erreur ΔF_o déterminée expérimentalement. Celle-ci se compose de l'erreur dûe au grain du film, de l'écart entre les réflexions symétriques et de l'erreur dûe aux corrélations des expositions successives. F_o est corrigé des facteurs de Lorentz et de polarisation. Les calculs ont été effectués sur machine Bull Γ ET à l'aide des programmes (Grandjean, Weiss & Strosser, 1963, 1964).

Détermination de la structure

L'interprétation des fonctions de Patterson projetées parallèlement à \mathbf{a} et \mathbf{c} , à l'aide du photosommateur

harmonique de Von Eller, a conduit au facteur résiduel $R = \Sigma ||F_0| - |F_c||/\Sigma |F_0| = 0,28$. Les 40 signes les plus sûrs des F_c de la projection hk0 ont permis un affinement par synthèse différence $(\varrho_0 - \varrho_c)$. Au cinquième essai, nous obtenons R = 0,15. Les coordonnées x, y résultantes, jointes à la cote z tirée de la projection de Patterson **a**, permettent un affinement tridimensionnel par les moindres carrés. En six cycles, R passe de 0,23 à 0,084 pour l'ensemble des 310 réflexions indépendantes mesurées. L'affinement ne semble pas pouvoir être poursuivi car le facteur résiduel, dû à l'erreur expérimentale ΔF_0 définie précédemment, $R' = \Sigma |\Delta F_0|/\Sigma |F_0|$ est égal à 0,08.

Déscription de la structure

Le Tableau 2 donne les coordonnées atomiques, les facteurs d'agitation thermique isotrope et les déviations standard (Cruickshank, 1959).

La Fig. 1 montre que l'octaèdre $Fe(CN)_6$ est régulier, aux erreurs expérimentales près appréciées par les déviations standard du Tableau 2.

Les liaisons Fe-C-N sont linéaires et les distances interatomiques sont, d'après la Fig.1: Fe-C $1,89 \pm 0,01$ Å et C-N $1,15 \pm 0,01$ Å; elles sont identiques à celles trouvées dans $K_3Co(CN)_6$ par diffraction des neutrons (Curry & Runciman, 1959).

La structure de H₄Fe(CN)₆ est constituée d'ions Fe(CN)₆ dont la face N(1)N(2)N(3) (Fig.2) est perpendiculaire à l'axe c du cristal, à 3° près (β =105°15').

Position des atomes d'hydrogène

Dans l'hypothèse où l'hydrogène se place en position générale $2 \times (4)$, on peut avoir:

- soit des ponts hydrogène entre les groupements cyanures
- soit des liaisons covalentes avec l'azote (Sidgwick, 1962).

Dans ce cas, la liaison C-N doit tendre vers une liaison double. Cette dernière alternative est peu probable puisque toutes les distances C-N observées sont compatibles avec des liaisons triples. Tableau 1 Facteurs de structure observés et calculés*

hkl	Fo	Fc	ΔFo	h k l	Fo	Fc	۵Fo
200	13,9	14,3	1, 0	211	26,2	- 24,7	2,4
400	21,5	23,2	1,5	311	12,4	12,9	1,0
600	20,8	18,1	1,6	411	5,3	- 4,1	0,6
110	46,9	49,4	3,8	511	16,7	15,4	1,3
210	23,7	- 23, 1	2,0	611	7,3	6,7	0,5
310	38,1	38,5	3,2	021	61.6	60,4	5,2
410	14,5	-13,1	1,1	121	54,0	- 49,6	4,3
510	20,6	19,5	1,5	221	28,6	29, 5	1,9
020	55,0	53,9	4,1	421	23,4	29,2	2,3
320	15,4	- 14, 7	1,2	621	13,7	11,4	0,8
420	23,0	24,1	2, 0	031	65,6	64,5	5,9
520	9,3	- 8,7	0,9	131	55,0	48, 4	3,3
620	19,4	18,2	1,5	231	20,0	- 23,0	1,6
130	22,7	23,5	2,3	331	24,7	29,3	2,5
230	16,2	15,5	2,7	431	7,5	- 8,1	0,7
530	21,4	21,3	1,9	531	15,8	16,4	1,6
140	10,7	-10,1	1,1	041	31,8	33,4	2,9
240	36,1	37,3	2,4	241	15,1	15,6	1,0
340	10,5	9,6	1,3	441	13,6	14,9	1,0
440	17,0	16,9	1,7	641	14,9	13,9	1,0
540	8,0	6,3	0,8	051	17,7	16,3	1,6
640	6,4	3,1	0,5	151	21,2	22,0	1,4
150	38,6	39,8	3,3	251	10,5	- 8,5	0,5
250	11,0	9,3	1,1	351	12,8	12,7	0,8
350	12,9	13,9	1,3	451	11,5	10,9	1,4
550	12,7	11,7	1,1	551	9,8	8,7	0,7
160	20,6	- 18, 5	2,4	061	20, 1	20,5	1,1
260	35,0	34,6	3,5	161	7,6	6,2	0,6
460	15,3	15,7	1,4	261	34,3	36,1	2,4
170	17,1	17,6	2,5	461	54,0	53, Z	5,4
370	24,3	23,1	3,2	561	8,7	7,7	0,6
080	17,2	15,9	2,2	171	18,7	18,3	1, 1
280	24,7	24, 8	2,7	371	16,4	16,7	1,2
480	12,6	11,0	1,0	471	6,2	6,6	0,6
190	17,5	16,3	1,9	571	11,8	10,2	0,8
290	12,1	-11,6	1,4	081	11,4	10,1	0.7
390	20,7	18,5	1,8	281	24,5	25, 4	1,6
0°1 0°0	11,5	9,8	0,8	481	5,0	2,2	0,5
2,1 0,0	13,2	11,7	1,0	091	8,1	- 9,7	0,7
401	12,9	13,8	0,6	191	6,5	5,4	0,5
601	5,7	5,0	0,3	391	9,0	8,8	0,7
111	48,0	46,7	3,5	0,10,1	8,6	7,3	0,6

* Les facteurs de diffusion atomique (Moore, 1963) utilisés dans le calcul de Fc ont été corrigés, pour le fer, de la dispersion anomale (James, 1954).

Table 1 (suite)

hkl	Fo	Fc	7 Fo	h k I	Fo	Fc	7 F. o
1,1 Q1	9,7	- 8,7	0,9	112	49,9	47,9	4,7
2101	7,8	7,4	0,8	312	6,3	9,0	0,3
1111 -	8,4	8,2	0,6	412	6,6	9,8	0,8
201	58,3	61,5	5,0	022	30,0	28,0	2,3
401	36,8	41,6	2,2	122	6,2	6,2	0,3
601	20, 2	20,3	1,3	222	35,8	33,9	2,8
111	49,9	51,1	3,0	422	7,1	10,7	0,4
Ž11	52,6	-53,0	5,0	622	4,1	5,5	0,7
311	23,6	26,5	1,5	032	5,0	- 3,3	0,6
511	22, 1	28,0	2,0	132	37,6	35,9	3,0
611	9,1	9,3	0,7	232	25,9	-27,0	2,9
711	8,8	8,6	0,4	332	22,6	22,7	1,8
121	11,4	-10,6	0,9	532	12,7	11,9	1,3
221	21,8	22,2	1,4	042	35,9	39,6	3.1
121	8,8	8,6	0, 4	242	35,3	33,1	3,2
621	10,8	9,9	0, 7	,42	9,6	11,7	0,8
131	6,5	7,4	0,4)52	28,1	29,6	2,8
231	26,6	-26,5	1,6	152	10,3	11,1	1, 3
331	18,9	20,5	1,0	252	8,7	-11,9	1,1
531	11,5	10,4	1,0	352	21,0	21,6	1,3
631	7,9	7,2	0,6	552	17,8	15,8	0,9
T41	21,8	20,6	1,5	062	34,7	36,9	2,9
241	17,6	17,7	1, 1	162	7,3	8,9	0,4
441	18,2	18,7	1,4	262	7,4	9,5	0,7
641	9,3	9,3	0,5	462	6,0	6,1	0,7
Ī51	18,5	19,9	1,1	072	6,8	8,8	0,7
351	24,5	29,9	1,8	172	15,8	14,9	0, 9
551	14, 3	12,8	1,4	082	18,7	17,1	1,2
261	14,5	14,5	0,4	382	5,8	- 7,2	0,7
361	11,7	- 11, 3	0,8	482	10,1	9,6	0,6
461	23,1	23,7	2,1	092	7,3	- 9,0	0,4
361	7,2	7,5	0,4	192	6,7	8,0	1,2
661	5,3	4,4	0,2	392	11,3	10,0	1,1
171	26,1	31,5	2,0	Q1 Q2	9,2	9,2	0, 9
271	11,5	9,2	0,6	2,1 0,2	8,0	9,3	0,6
371	15,6	14, 3	0,9	202	45,2	44,0	3,0
571	8,8	7,5	1, 1	-102	8,5	10,9	0,6
181	6,3	7,6	0,9	602	8,0	9,9	0,6
281	19, 2	18,1	1.4	312	27,0	30,2	2,4
481	20,9	20,0	1,4	412	18,6	-17,2	1,7
391	15,0	13, 3	0,7	512	21,9	21,2	1,3
2101	15,4	14,8	1,0	222	48,6	52,5	3,2
002	33,2	- 27, 1	2, 2	522	30,7	-28,9	2,1
202	21,7	22,1	1,5	422	30, 1	27,5	1,6
402	17.9	20,6	1,3	132	45.8	44.5	3,7

Par ailleurs, les distances N-N entre octaèdres voisins sont supérieures à 3,5 Å, sauf deux d'entre elles (Fig. 2):

I N(3)-N(1') 2,68 Å II N(1)-N(2) 2,88

L'étude des sections de Fourier parallèles à (010) et passant respectivement au milieu des liaisons I et II montre la présence d'un maximum très net de densité électronique de 0,6 e.Å-3. Les Figs.3 et 4 donnent les sections différences I et II calculées sans la contribution de l'hydrogène. Elles montrent chacune un maximum de 0,3 et 0,5 e.Å⁻³ aux coordonnées du Tableau 3.

Le calcul de la densité électronique autour de ces positions, avec y comme variable, indique que les co-

Tabl	e 1 ((suite)
------	-------	---------

5 K I	Fo	Fc	ΔFo	h k l	Fo	Fc	7 E c
232	5,2	2,6	0, 5	363	10,5	-10,2	0,8
332	28,2	30,7	2,3	373	10,0	9,6	1,0
432	6,5	- 6,4	0,6	083	17,4	19,4	1,7
532	7,9	9,3	0, 8	093	8,3	9,6	0,8
542	20,2	24,0	2,0	193	9,0	8,9	0,6
642	7.0	8.0	0.5	ã03	23.8	0, 3 25 1	1.0
152	Z6, 1	22,4	1.4	603	7.0	-3.6	0.6
352	13,5	15,7	1,3	113	17,6	14.9	1.4
352	7,4	9,1	0,7	213	21, 1	19,1	1,5
652	6,4	6,7	0,4	313	29,9	29,1	2,4
262	7,2	10,1	0,7	123	12,3	-8,9	1,4
462	17,0	17,9	0,8	223	24,3	23,5	1,7
172	23.6	21.4	1,2	123	4,9	6, I 30 3	1.0
372	17,7	17,6	1,8	323	6.2	8.2	0.6
372	14,6	14,4	1,2	133	25,9	23,6	2,1
282	13,7	13,5	2, 1	333	24,6	27,6	1,8
482	6,3	7,0	0,5	133	12,0	-13,0	0,7
192	8,1	9,9	0,8	533	18,5	19,4	1,5
192	5, 5	5.6	0,9	243	39.5	-11,4	1, 2
592	9,5	9,4	0,8	143	11.5	12.2	0.7
2102	12,3	12,4	1, 1	643	8,5	8,8	0, 8
3192	4,8	- 6,4	0,4	153	23,7	25,2	2,4
1112	17,6	17,3	1,3	353	11,8	13,4	1,2
3,112	9,7	7,0	0,9	453	8,6	10,1	0,9
203	17,2	18,0	1,4	353	13,9	13,2	1,3
013	477, 4	13, 7	3, 2 0 8	263	16 4	15.9	0,7
113	17.3	19.5	1.9	173	9,1	10.0	0.7
313	16,4	17,1	1, 2	273	6,9	- 9.4	0.7
023	5,3	6,0	0,5	373	8,8	10,1	0,7
123	18,5	18,8	1,4	373	6,7	7,6	0,7
223	24,2	26,2	1,9	193	15,8	15,1	0,9
123	11,6	-10,4	1,2	293	6,2	- 8,0	0,3
333	9.9	10.0	1.0	204	22 7	18,1	1,6
433	8.1	10.1	0.8	014	3.8	- 4.3	0 4
043	28, 2	26,5	1,5	114	13,5	14.0	0,8
243	22, 3	20,9	1,2	214	5,0	6,6	0,5
443	17,5	14,9	1,6	314	12,3	12,7	1,1
153	30,4	28,5	2,4	024	16,6	16,3	1,6
353	16,3	15,1	1,5	224	17,6	18,5	1,1
063	22,3	20,8	1, 4	234	19, 1	18,8	1,9
			Table	l (suite)	1		
h k l	Fo	Fc	ΔFo	hki	Fo	Fc	
334	15 5	13 7					
044	18,3	16.7	1,2	354 164	19,8	22,8	2,0
144	8.4	8.7	0.8	264	15,0	-15,5	1,3
244	53	5 2	0,0	1	17,4	18,2	1,7
054	12 1	3,3	1, 4	1/4	8,9	9,9	0,9
154	10.5	-13, 9	1,0	116	18,5	18,8	1,7
064	5,6	7.2	0,6	025	12,1	10,2	1,2
204	16,5	16,9	1,1	125	6.8	4.2	0.5
404	23,8	24,4	1,8	205	16,4	19, 1	1,2
314	27,9	23,9	1,8	115	14,8	15,6	1,3
314	3,5	- 4,0	0,2	315	12, 2	15,2	1,3
414	10,9	12.4	0.5	425	17,5	18,1	1,7
514	6,9	7,0	0,3	135	14.6	16.9	1.5
124	5,4	4,6	0,4	335	13,3	9,5	1,1
224	10,7	10,6	1,0	435	14,3	12,0	1,0
324	6,4	7,5	0,4	245	10,8	6,9	0,5
134	12.8	12,6	0,6	345	6,3	5,4	0,6
334	22,7	22,0	2,0	255	12.3	- 9 5	0,8
1 34	13,1	13,7	0, 8		, -	- 7,5	1, 4
344	27,9	26,5	2,2				
144	14,0	13,2	0,8				
154	15,1	15,1	1,3				

Tableau 2. Coordonnées atomiques, facteurs d'agitation thermique isotrope (Å²) et deviations standard (Å)

	x	У	Z	В	$\sigma(x)$	$\sigma(y)$	$\sigma(z)$
Fe	0	0	0	2.30			
C(1)	0,1950	-0,0792	0,2245	2,56	0,006	0,004	0,004
N(1)	0,3204	-0,1256	0,3592	3,71	0,005	0,004	0,004
C(2)	-0,2027	-0,0505	0,1308	2,68	0,003	0,004	0,007
N(2)	-0,3248	0,0800	0,2119	3,53	0,006	0,005	0,005
C(3)	0,0430	0,1357	0,1903	2,85	0,005	0,005	0,005
N(3)	0,0683	0,2190	0,3021	3,64	0,005	0,005	0,005

Tableau 5. Coordonnees des diomes nvaroge	Tableau	3.	Coordonnées	des	atomes	hvdrogèi
---	---------	----	-------------	-----	--------	----------

Fig. 1. Distances et angles trouvés dans le groupement [Fe(CN)₆]⁴⁻. L'octaèdre est régulier, aux erreurs expérimentales près.

ordonnées précédentes correspondent effectivement au maximum dans l'espace.

Les sections différences calculées à ces niveaux et en tenant compte de la contribution de l'hydrogène (facteur de diffusion sans agitation thermique) décèlent des densités négatives aux coordonnées attribuées à l'hydrogène: elles sont respectivement égales à -0,1 et -0,2 e.Å⁻³.

Les valeurs F_c du Tableau 1 sont calculées avec les coordonnées des Tableaux 2 et 3, et le facteur résiduel est de R=0,082. La comparaison des trois colonnes du Tableau 1 montre que les écarts individuels entre F_o et F_c tombent bien dans l'erreur expérimentale ΔF_o . Les 150 taches estimées visuellement ont toutes un F_c faible. Elles ne sont pas reportées dans le Tableau 1.

La structure de H₄[Fe(CN)₆] cristallisé trouve sa stabilité dans le réseau de liaisons hydrogène entre atomes N des groupements [Fe(CN)₆]⁴⁻ différents. Les atomes N(1) participent (Fig. 5) avec N(2) et $\overline{N}(3')$ à deux liaisons hydrogène, les atomes N(2) et $\overline{N}(3')$ à une seule avec N(1). N(2) et $\overline{N}(3')$ ne sont pas liés par un pont hydrogène. Les liaisons hydrogène sont très courtes, et l'une est presque symétrique:

 $N(1) -H_I = 1,45 \text{ Å}$ $\overline{N}(3') -H_I = 1,23$ l'angle $N(1)H_I\overline{N}(3') = 185^\circ$

Fig. 2. Projection de la structure sur (001). Les sommets des octaèdres représentent les atomes d'azote. Position des hydrogènes.

l'autre dissymétrique:

 $N(1)-H_{II}=1,81 \text{ Å}$ $N(2)-H_{II}=1,11$ l'angle $N(1)H_{II}N(2)=196^{\circ}$.

Ces résultats sont conformes à l'étude et à l'interprétation du spectre infra-rouge de H_4 Fe(CN)₆ cristallisé faite par Evans, Jones & Wilkinson (1964).

Pour confirmer ces résultats nous avons commencé une étude par diffraction des neutrons, et nous pensons que l'analyse de la relation entre la morphologie et la structure apportera également des preuves supplémentaires.

Cette étude a été entreprise grâce à l'aide du Centre National de la Recherche Scientifique que nous remerçions ici, ainsi que le Centre de Calcul de la Faculté des Sciences de Strasbourg.

Références

- BATSANOV, S. S. (1958). Vestn. Moskov. Univ. p. 177.
- CRUICKSHANK, D. W. J. (1949). Acta Cryst. 2, 65.
- CURRY, N. A. & RUNCIMAN, W. A. (1959). Acta Cryst. 12, 674.
- EVANS, D. F., JONES, D. & WILKINSON, G. (1964) J. Chem. Soc. p. 3164.

Fig. 4. Section différence $\rho_o - \rho_c$ (F_c : Fe, C, N) parallèle à (010), à la cote y = -0,103. Ce plan coupe le milieu de la liaison N(1)-N(2) de la Fig.2 à proximité duquel se trouve H_{II}.

Fig. 5. Liaisons hydrogène entre atomes d'azote de trois octaèdres [Fe(CN)₆]⁴⁻.

GINSBERG, A. P. & KOUBEK, E. (1965). Inorg. Chem. 4, 1188. GRANDJEAN, D., WEISS, R. & STROSSER, R. (1963). Bull. Soc. franç. Minér. Crist. 86, 425.

GRANDJEAN, D., WEISS, R. & STROSSER, R. (1964). Bull. Soc. franç. Miner. Crist. 87, 87.

JAMES, R. W. (1954). *The Optical Principles of the Diffraction* of X-rays, p. 610. London: Bell.

MOORE, F. H. (1963). Acta Cryst. 16, 1169.

PIERROT, M. & KERN, R. (1964). Acta Cryst. 17, 1612.